-
据估计,2017 年全球有 4.51 亿(18~99 岁)糖尿病(DM)患者,预计到 2045 年,这一数字将增至 6.93 亿[1]。糖尿病肾病(DKD)是DM的一种严重并发症,是世界范围内终末期肾病(ESRD)的主要病因[2, 3]。DKD的发生率与DM的发病率和病死率增加密切相关[4]。在美国,开始接受ESRD治疗的DM患者数量从2000年的4万多人显著增加到2014年的5万多人[5]。在我国,DKD的发病率在过去10年中显著增加,2013年的一项调查结果显示,中国DKD患者数量估计达到2 430万[6]。当前,DM患病率持续上升,如果DKD的临床预防策略没有改善,预计DKD的患病率也会随之增加[7, 8]。然而目前除了控制血糖、血压等手段外,临床上尚无其他有效预防DKD的方案。DKD的发病机制复杂,其分子机制还没有得到全面阐明。近年来,越来越多的研究发现,肠道菌群在DKD的发生发展中发挥了重要作用,本文围绕DKD的肠道菌群参与情况,综述其研究进展。
肠道菌群是一个由微生物菌落组成的复杂生态系统,包括至少1 000个不同物种的数万亿细菌,另外还有其他共生生物,如古细菌、病毒、真菌和原生生物。肠道菌群失调的主要特征是细菌和真菌的多样性和丰度下降[9]。近年来,人们对肠道菌群与宿主相互作用产生极大兴趣,众多证据表明,肠道菌群在人类健康和疾病中发挥重要作用,菌群失调已被证明与动脉粥样硬化、高血压、心力衰竭、慢性肾病(CKD)、肥胖和2型糖尿病(T2DM)等疾病有关[10]。肠道菌群有能力产生一系列代谢产物,包括短链脂肪酸(SCFAs)、N-氧化三甲胺(TMAO)、胆汁酸(BA)、蛋白质结合的尿毒症毒素(PBUT)、支链氨基酸(BCAAs)和一些其他未知代谢产物。肠道微生物产生的代谢产物被认为是微生物与宿主之间交流的媒介,对人体的生物活性和代谢有重要影响[11]。近年来,许多研究调查了DM、肥胖和代谢综合征等代谢性疾病患者肠道微生物群的多样性和功能的变化。有研究发现,这些患者的肠道微生物群落发生了显著变化,并导致肠道微生物群失调和肠漏综合征,肠道屏障功能障碍,肠道通透性增加[12]。多种肠道微生物群代谢产物被释放到血液中,如SCFAs、TMAO、脂多糖(LPS)和尿毒症毒素,再通过多种信号通路进一步导致疾病表型的变化[13, 14]。
Research progress on the mechanism of gut microbiota participating in diabetes nephropathy
-
摘要: 随着糖尿病患病率升高,糖尿病肾病的预防和治疗已成为世界性难题。糖尿病肾病发生发展的分子机制目前尚不明确,但近年来诸多研究表明,肠道菌群在糖尿病肾病的进展中发挥重要作用。综述了肠道菌群参与糖尿病肾病的机制研究进展。Abstract: With the increasing prevalence of diabetes, the prevention and treatment of diabetes nephropathy have become a worldwide problem. The molecular mechanism of the occurrence and development of diabetes nephropathy is still unclear, but many studies in recent years have shown that gut microbiota plays an important role in the progress on diabetes nephropathy. The research progress on the mechanism of gut microbiota participating in diabetes nephropathy was reviewed in this article.
-
Key words:
- diabetes /
- diabetes nephropathy /
- intestinal flora /
- intestinal permeability
-
[1] CHO N, SHAW J, KARURANGA S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. DIABETES RES CLIN PR, 2018, 138:271-281. doi: 10.1016/j.diabres.2018.02.023 [2] MARTÍNEZ-CASTELAO A, NAVARRO-GONZÁLEZ J, GÓRRIZ J, et al. The concept and the epidemiology of diabetic nephropathy have changed in recent years[J]. J Clin Med, 2015, 4(6):1207-1216. doi: 10.3390/jcm4061207 [3] SARAN R, ROBINSON B, ABBOTT K C, et al. US renal data system 2016 annual data report: epidemiology of kidney disease in the United States[J]. Am J Kidney Dis, 2017, 69(3):A4. doi: 10.1053/j.ajkd.2017.01.036 [4] VALENCIA WM, FLOREZ H.How to prevent the microvascular complications of type 2 diabetes beyond glucose control[J]. BMJ, 2017, 356: j1018. [5] CENTERS FOR DISEASE CONTROL AND PREVENTION (CDC). Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes: - United States and Puerto Rico, 1996-2007[J]. MMWR Morb Mortal Wkly Rep, 2010, 59(42):1361-1366. [6] ZHANG L X, LONG J Y, JIANG W S, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9):905-906. doi: 10.1056/NEJMc1602469 [7] OSAMA G, NASHWA F, NARAYANAN N, et al. Diabetic kidney disease: world wide difference of prevalence and risk factors[J]. J Nephropharmacology, 2016, 5(1):49-56. [8] STENVINKEL P. Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease[J]. Journal of internal medicine 2010; 268: 456-467. [9] IATCU C O, STEEN A, COVASA M. Gut microbiota and complications of type-2 diabetes[J]. Nutrients, 2021, 14(1):166. doi: 10.3390/nu14010166 [10] WILSON TANG W H, KITAI T, HAZEN S L. Gut microbiota in cardiovascular health and disease[J]. Circ Res, 2017, 120(7):1183-1196. doi: 10.1161/CIRCRESAHA.117.309715 [11] SCHROEDER B O, BÄCKHED F. Signals from the gut microbiota to distant organs in physiology and disease[J]. Nat Med, 2016, 22(10):1079-1089. doi: 10.1038/nm.4185 [12] YANG G, WEI J, LIU P, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. METABOLISM, 2021, 117:154712. doi: 10.1016/j.metabol.2021.154712 [13] SHARMA M, LI Y Y, STOLL M L, et al. The epigenetic connection between the gut microbiome in obesity and diabetes[J]. Front Genet, 2020, 10:1329. doi: 10.3389/fgene.2019.01329 [14] JAWORSKA K, KOPACZ W, KOPER M, et al. Enalapril diminishes the diabetes-induced changes in intestinal morphology, intestinal RAS and blood SCFA concentration in rats[J]. Int J Mol Sci, 2022, 23(11):6060. doi: 10.3390/ijms23116060 [15] DU X, LIU J, XUE Y, et al. Alteration of gut microbial profile in patients with diabetic nephropathy[J]. Endocrine, 2021, 73(1):71-84. doi: 10.1007/s12020-021-02721-1 [16] QIN J J, LI Y R, CAI Z M, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418):55-60. doi: 10.1038/nature11450 [17] KARLSSON F H, TREMAROLI V, NOOKAEW I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control[J]. Nature, 2013, 498(7452):99-103. doi: 10.1038/nature12198 [18] ZHANG L, LU Q Y, WU H, et al. The intestinal microbiota composition in early and late stages of diabetic kidney disease[J]. Microbiol Spectr, 2023, 11(4):e0038223. doi: 10.1128/spectrum.00382-23 [19] KALANTAR-ZADEH K, JAFAR T H, NITSCH D, et al. Chronic kidney disease[J]. Lancet, 2021, 398(10302):786-802. doi: 10.1016/S0140-6736(21)00519-5 [20] WANG X, YANG S, LI S, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents[J]. Gut, 2020, 69(12):2131-2142. doi: 10.1136/gutjnl-2019-319766 [21] WANG S L, SHAO B Z, ZHAO S B, et al. Impact of paneth cell autophagy on inflammatory bowel disease[J]. Front Immunol, 2018, 9:693. doi: 10.3389/fimmu.2018.00693 [22] BUCKLEY A, TURNER J R. Cell biology of tight junction barrier regulation and mucosal disease[J]. Cold Spring Harb Perspect Biol, 2018, 10(1):a029314. doi: 10.1101/cshperspect.a029314 [23] MAHMOODPOOR F, RAHBAR SAADAT Y, BARZEGARI A, et al. The impact of gut microbiota on kidney function and pathogenesis[J]. Biomed Pharmacother, 2017, 93:412-419. doi: 10.1016/j.biopha.2017.06.066 [24] VAZIRI N D, YUAN J, NORRIS K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease[J]. Am J Nephrol, 2013, 37(1):1-6. doi: 10.1159/000345969 [25] MATHEWSON N D, JENQ R, MATHEW A V, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease[J]. Nat Immunol, 2016, 17(5):505-513. doi: 10.1038/ni.3400 [26] HUANG X Y, OSHIMA T, TOMITA T, et al. Butyrate alleviates cytokine-induced barrier dysfunction by modifying claudin-2 levels[J]. Biology, 2021, 10(3):205. doi: 10.3390/biology10030205 [27] NOWARSKI R, JACKSON R, GAGLIANI N, et al. Epithelial IL-18 equilibrium controls barrier function in colitis[J]. Cell, 2015, 163(6):1444-1456. doi: 10.1016/j.cell.2015.10.072 [28] TONG L C, WANG Y, WANG Z B, et al. Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress[J]. Front Pharmacol, 2016, 7:253. [29] FENG Y H, WANG Y, WANG P, et al. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy[J]. Cell Physiol Biochem, 2018, 49(1):190-205. doi: 10.1159/000492853 [30] SAYIN S, WAHLSTRÖM A, FELIN J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17(2):225-235. doi: 10.1016/j.cmet.2013.01.003 [31] SCHAAP F G, TRAUNER M, JANSEN P L M. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1):55-67. doi: 10.1038/nrgastro.2013.151 [32] HUANG W D, MA K, ZHANG J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration[J]. Science, 2006, 312(5771):233-236. doi: 10.1126/science.1121435 [33] WANG X X, WANG D, LUO Y H, et al. FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity[J]. J Am Soc Nephrol, 2018, 29(1):118-137. doi: 10.1681/ASN.2017020222 [34] XIAO H M, SUN X H, LIU R B, et al. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy[J]. Pharmacol Res, 2020, 151:104559. doi: 10.1016/j.phrs.2019.104559 [35] MARQUARDT A, AL-DABET M M, GHOSH S, et al. Farnesoid X receptor agonism protects against diabetic tubulopathy: potential add-on therapy for diabetic nephropathy[J]. J Am Soc Nephrol, 2017, 28(11):3182-3189. doi: 10.1681/ASN.2016101123 [36] DU Y, YANG Y T, TANG G, et al. Butyrate alleviates diabetic kidney disease by mediating the miR-7a-5p/P311/TGF-β1 pathway[J]. FASEB J, 2020, 34(8):10462-10475. doi: 10.1096/fj.202000431R [37] DONG W P, JIA Y, LIU X X, et al. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC[J]. J Endocrinol, 2017, 232(1):71-83. doi: 10.1530/JOE-16-0322 [38] XU Y H, GAO C L, GUO H L, et al. Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice[J]. J Endocrinol, 2018, 238(3): 231-244. [39] RAMEZANI A, MASSY Z A, MEIJERS B, et al. Role of the gut microbiome in uremia: a potential therapeutic target[J]. Am J Kidney Dis, 2016, 67(3):483-498. [40] ZHANG F, QI L L, FENG Q Y, et al. HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis[J]. Proc Natl Acad Sci USA, 2021, 118(28):e2021798118. doi: 10.1073/pnas.2021798118 [41] HU X Y, LI S M, FU Y H, et al. Targeting gut microbiota as a possible therapy for mastitis[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(8):1409-1423. doi: 10.1007/s10096-019-03549-4 [42] HU Z B, LU J, CHEN P P, et al. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis[J]. Theranostics, 2020, 10(6):2803-2816. doi: 10.7150/thno.40571 [43] LU C C, HU Z B, WANG R, et al. Gut microbiota dysbiosis-induced activation of the intrarenal renin-angiotensin system is involved in kidney injuries in rat diabetic nephropathy[J]. Acta Pharmacol Sin, 2020, 41(8):1111-1118. doi: 10.1038/s41401-019-0326-5 [44] GRUPPEN E G, GARCIA E, CONNELLY M A, et al. TMAO is associated with mortality: impact of modestly impaired renal function[J]. Sci Rep, 2017, 7(1):13781. doi: 10.1038/s41598-017-13739-9 [45] SUN G P, YIN Z M, LIU N Q, et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity[J]. Biochem Biophys Res Commun, 2017, 493(2):964-970. doi: 10.1016/j.bbrc.2017.09.108 [46] AL-OBAIDE M, SINGH R, DATTA P, et al. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD[J]. J Clin Med, 2017, 6(9):86. doi: 10.3390/jcm6090086 [47] YANG M X, ZHANG R, ZHUANG C F, et al. Serum trimethylamine N-oxide and the diversity of the intestinal microbial flora in type 2 diabetes complicated by diabetic kidney disease[J]. Clin Lab, 2022, 68(5): 10.7754/Clin. Lab. 2021.210836. [48] FANG Q, ZHENG B J, LIU N, et al. Trimethylamine N-oxide exacerbates renal inflammation and fibrosis in rats with diabetic kidney disease[J]. Front Physiol, 2021, 12:682482. doi: 10.3389/fphys.2021.682482 [49] MAO Z H, GAO Z X, LIU D W, et al. Gut microbiota and its metabolites–molecular mechanisms and management strategies in diabetic kidney disease[J]. Front Immunol, 2023, 14:1124704. doi: 10.3389/fimmu.2023.1124704
计量
- 文章访问数: 5857
- HTML全文浏览量: 2095
- PDF下载量: 44
- 被引次数: 0