留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

来源于天然产物的抗肿瘤先导结构研究进展

武善超 盛春泉 张万年

武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
引用本文: 武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
Citation: WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005

来源于天然产物的抗肿瘤先导结构研究进展

doi: 10.3969/j.issn.1006-0111.2014.05.005
基金项目: 国家自然科学基金重点项目(30930107).

Advance in anti-cancer lead-compounds derived from natural products

  • 摘要: 肿瘤严重威胁人类生命健康,因此发现新结构类型、新作用机制、更有效的抗肿瘤药成为当务之急。天然产物在抗肿瘤药物发现过程中有着重要的作用和意义。综述几种具有抗肿瘤活性的天然产物,重点阐述其作用机制、抗肿瘤活性及构效关系的研究进展。
  • [1] Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years[J]. J Nat Prod,2007, 70 (3):461-477.
    [2] Kessler JH, Mullauer FB, de Roo GM, et al. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types[J]. Cancer Lett,2007, 251 (1):132-145.
    [3] Zuco V, Supino R, Righetti SC, et al. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells[J]. Cancer Lett,2002, 175 (1):17-25.
    [4] Chintharlapalli S, Papineni S, Ramaiah SK, et al. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors[J]. Cancer Res,2007, 67 (6):2816-2823.
    [5] Mertens-Talcitt SU, Noratto GD, Li X, et al. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo:role of Sp transcription factors and microRNA-27a:ZBTB10[J]. Mol Carcinog, 2012Mar7,doi: 10.1002/mc.21893.
    [6] Eichenmuller M, Hemmerlein B, Von Schweinits D, et al. Betulinic acid induces apoptosis and inhibits hedgehog signalling in rhabdomyosarcoma[J]. Br J Cancer, 2010, 103 (1):43-51.
    [7] Liu X, Jutooru I, Lei P, et al. Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer[J]. Mol Cancer Ther, 2012, 11 (7):1421-1431.
    [8] Kama E,Szoka L, Palka JA, et al. Betulinic acid inhibits the expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in human endometrial adenocarcinoma cells[J]. Mol Cell Biochem, 2010, 340 (1-2):15-20.
    [9] Pandey MK, Sung B, Aggarwail BB, et al. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells[J]. Int J Cancer, 2010, 127 (2):282-292.
    [10] Liu Y, Luo W. Betulinic acid induces Bax/Bak-independent cytochrome C release in human nasopharyngeal carcinoma cells[J]. Mol Cells, 2012, 33 (5):517-524.
    [11] Yogeeswari P, Sriram D. Betulinic acid and its derivatives:a review on their biological properties[J]. Curr Med Chem, 2005, 12 (6):657-666.
    [12] Eiznhamer DA, Xu ZQ. Betulinic acid:a promising anticancer candidate[J]. I Drugs, 2004, 7 (4):359-373.
    [13] Chintharlli S, Papineni S, Lei P, et al. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and-independent downregulation of specificity proteins (Sp) transcription factors[J]. BMC Cancer, 2011, 11:371.
    [14] Mukheijee R, Kumar V, Srivastava SK, et al. Betulinic acid derivatives as anticancer agents:structure activity relationship[J]. Anticancer Agents Med Chem, 2006, 6 (3):271-279.
    [15] Urban M, Vlkm M, Dzubak P, et al. Cytotoxic heterocyclic triterpenoids derived from betulin and betulinic acid[J]. Bioorg Med Chem, 2012, 20 (11):3666-3674.
    [16] Ahmad FB, Ghaffari Moghaddam M,Basri M, et al. Anticancer activity of 3-O-acylated betulinic acid derivatives obtained by enzymatic synthesis[J]. Biosci Biotechnol Biochem, 2010, 74 (5):1025-1029.
    [17] Kundu JK,Surh YJ. Cancer chemopreventive and therapeutic potential of resveratrol:mechanistic perspectives[J]. Cancer Lett, 2008, 269 (2):243-261.
    [18] Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes[J]. Science, 1997, 275 (5297):218-220.
    [19] Kundu JK, Surh YJ. Molecular basis of chemoprevention by resveratrol:NF-kappaB and AP-1 as potential targets[J]. Mutat Res, 2004, 555 (1-2):65-80.
    [20] Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols[J]. Antioxid Redox Signal, 2005, 7 (11-12):1630-1647.
    [21] Bhardwaj A, Sethi G, Vadhan-Raj S, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells[J]. Blood,2007, 109 (6):2293-2302.
    [22] Cai YJ, Wei QY, Fang JG, et al. The 3,4-dihydroxyl groups are important for trans-resveratrol analogs to exhibit enhanced antioxidant and apoptotic activities[J]. Anticancer Res, 2004, 24 (2B):999-1002.
    [23] Hung LM, Su MJ, Chu WK, et al. The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy[J]. Br J Pharmacol, 2002, 135 (7):1627-1633.
    [24] Saiko P, Szakmary A, Jaeger W, et al. Resveratrol and its analogs:defense against cancer, coronary disease and neurodegenerative maladies or just a fad? [J]. Mutat Res, 2008, 658 (1-2):68-94.
    [25] Jiang GJ, Hu C. Evodiamine:a novel anti-cancer alkaloid from Evodia rutaecarpa[J]. Molecules, 2009, 14 (5):1852-1859.
    [26] Liao CH, Pan SL,Guh JH, et al.Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo[J]. Carcinogenesis, 2005, 26 (5):968-975.
    [27] Zhang C, Fan X, Xu X, et al. Evodiamine induces caspase-dependent apoptosis and S phase arrest in human colon lovo cells[J]. Anticancer Drugs, 2010, 21 (8):766-776.
    [28] Liao CH, Pan SL, Guh JH, et al. Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo[J]. Carcinogenesis, 2005, 26 (5):968-975.
    [29] Lee TJ, Kim EJ, Kim S, et al. Caspase-dependent and caspase-independent apoptosis induced by evodiamine in human leukemic U937 cells[J]. Mol Cancer Ther, 2006, 5 (9):2398-2407.
    [30] Takada Y, Kobaysshi Y, Aggarwal BB. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion[J]. J Biol Chem, 2005, 280 (17):17203-17212.
    [31] Yang ZG, Chen AQ, Liu B. Antiproliferation and apoptosis induced by evodiamine in human colorectal carcinoma cells (COLO-205)[J]. Chem Biodivers, 2009, 6 (6):924-933.
    [32] Huang H, Zhang Y, Liu X, et al. Acid sphingomyelinase contributes to evodiamine-induced apoptosis in human gastric cancer SGC-7901 cells[J]. DNA Cell Biol, 2011, 30 (6):407-412.
    [33] Rasul A, Yu B, Zhong L, et al. Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy[J]. Oncol Rep, 2012, 27 (5):1481-1487.
    [34] Wei WT, Chen H, Wang ZH, et al. Enhanced antitumor efficacy of gemcitabine by evodiamine on pancreatic cancer via regulating PI3K/Akt pathway[J]. Int J Biol Sci, 2012, 8 (1):1-14.
    [35] Dong G, Sheng C, Wang S, et al. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents[J]. Med Chem, 2010,53 (21):7521-7531.
    [36] Sheng C, Miao Z, Zhang W. New strategies in the discovery of novel non-camptothecin topoisomerase I inhibitors[J]. Curr Med Chem, 2011, 18(28):4389-4409.
    [37] Anand P, Sundaram C, Jhurani S, et al. Curcumin and cancer:an "old-age" disease with an "age-old" solution[J]. Cancer Lett, 2008, 267 (1):133-164.
    [38] Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin":from kitchen to clinic[J]. Biochem Pharmacol, 2008, 75 (4):787-809.
    [39] Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases[J]. Int J Biochem Cell Biol, 2009, 41 (1):40-59.
    [40] Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin[J]. Adv Exp Med Biol, 2007, 595:127-148.
    [41] Qiu X, Liu Z, Shao WY, et al. Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors[J]. Bioorg Med Chem, 2008, 16(17):8035-8041.
    [42] Safavy A, Raisch KP, Mantena S, et al. Design and development of water-soluble curcumin conjugates as potential anticancer agents[J]. J Med Chem, 2007, 50(24):6284-6288.
    [43] Raj L, Ide T, Chrkar AU, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS[J]. Nature, 2011, 475(7355):231-234.
    [44] Bazerra DP, Castro FO,Alves AP, et al. In vivo growth-inhibition of sarcoma 180 by piplartine and piperine, two alkaloid amides from Piper[J]. Braz J Med Biol Res, 2006, 39(6):801-807.
    [45] Bezerra DP, Militao GC, de Castro FO, et al.Piplartine induces inhibition of leukemia cell proliferation triggering both apoptosis and necrosis pathways[J]. Toxicol In Vitro, 2007, 21(1):1-8.
    [46] Golowine KV, Makhov PB, Teper E, et al. Piperlongumine induces rapid depletion of the androgen receptor in human prostate cancer cells[J]. Prostate, 2013, 73(1):23.
    [47] Bezeera DP, de Castro FO, Alves AP, et al. In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine[J]. J Appl Toxicol, 2008, 28(2):156-163.
  • [1] 郭灵怡, 刘艳超, 高路, 刘瑞瑶, 吕权真, 俞媛.  醋酸卡泊芬净单硬脂酸甘油酯纳米粒抗白色念珠菌感染的增效作用研究 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202310043
    [2] 丁华敏, 郭羽晨, 秦春霞, 宋志兵, 孙莉莉.  消风止痒颗粒通过降低白三烯水平对小鼠特应性皮炎急性瘙痒的治疗作用研究 . 药学实践与服务, 2024, 42(5): 211-216. doi: 10.12206/j.issn.2097-2024.202306031
    [3] 陈金涛, 乔子婴, 马明华, 张若曦, 王振伟, 年华.  基于网络药理学和分子对接技术研究金芪清疏颗粒治疗社区获得性肺炎的潜在机制 . 药学实践与服务, 2024, 42(11): 471-478. doi: 10.12206/j.issn.2097-2024.202312014
    [4] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [5] 温瑞睿, 许龙, 朱文静, 杨建伟.  浅谈国外药师主导开展戒烟服务的作用与挑战 . 药学实践与服务, 2024, 42(): 1-6. doi: 10.12206/j.issn.2097-2024.202408054
    [6] 张修平, 田家盛, 王道鑫, 李佳鑫, 王品, 缪朝玉.  MT-1207对小鼠血糖、血脂和动脉粥样硬化的作用 . 药学实践与服务, 2024, 42(11): 487-494. doi: 10.12206/j.issn.2097-2024.202306011
    [7] 钱淑雨, 李铁军.  耐碳青霉烯类肠杆菌耐药机制的研究进展 . 药学实践与服务, 2024, 42(10): 419-425. doi: 10.12206/j.issn.2097-2024.202405005
    [8] 杨彬, 王作君, 陈菡, 张敬一.  基于DRGs的医院合理用药管理机制探索实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404030
    [9] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [10] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [11] 陈莹, 许子华, 胡北, 崔亚玲, 高欢, 吴琼.  通便灵胶囊治疗便秘的药效与机制研究 . 药学实践与服务, 2024, 42(): 1-7. doi: 10.12206/j.issn.2097-2024.202404008
    [12] 张广雨, 杜晶, 刘梦珍, 朱丹妮, 闫慧, 刘冲.  新斯的明与山莨菪碱联合应用对肺型氧中毒的保护作用及其机制的研究 . 药学实践与服务, 2024, 42(10): 433-438, 444. doi: 10.12206/j.issn.2097-2024.202310049
    [13] 岳春华, 贲永光, 王海桥.  基于NLRP1炎症小体探讨百合知母汤抗抑郁的作用机制 . 药学实践与服务, 2024, 42(8): 325-333. doi: 10.12206/j.issn.2097-2024.202401033
    [14] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [15] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [16] 景凯, 杨慈荣, 张圳, 臧艺蓓, 刘霞.  黄芪甲苷衍生物治疗慢性心力衰竭小鼠的药效评价及作用机制研究 . 药学实践与服务, 2024, 42(5): 190-197. doi: 10.12206/j.issn.2097-2024.202310004
    [17] 李清, 郭宜银, 陈颖, 瞿发林, 董文燊, 戈煜.  夜宁胶囊对小鼠镇静催眠作用及其机制的研究 . 药学实践与服务, 2024, 42(8): 346-349. doi: 10.12206/j.issn.2097-2024.202211047
    [18] 赖立勇, 夏天爽, 徐圣焱, 蒋益萍, 岳小强, 辛海量.  中药青蒿抗氧化活性的谱效关系研究 . 药学实践与服务, 2024, 42(5): 203-210, 216. doi: 10.12206/j.issn.2097-2024.202211012
    [19] 张林晨, 张小琴, 张俊平.  山楂酸药理作用的研究进展 . 药学实践与服务, 2024, 42(5): 185-189. doi: 10.12206/j.issn.2097-2024.202307052
    [20] 陈静, 何瑞华, 翁月, 徐熠, 刘静, 黄瑾.  基于网络药理学和分子对接技术探究定清片活性成分治疗白血病的作用机制 . 药学实践与服务, 2024, 42(11): 479-486. doi: 10.12206/j.issn.2097-2024.202401073
  • 加载中
计量
  • 文章访问数:  3140
  • HTML全文浏览量:  347
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-11
  • 修回日期:  2013-06-25

来源于天然产物的抗肿瘤先导结构研究进展

doi: 10.3969/j.issn.1006-0111.2014.05.005
    基金项目:  国家自然科学基金重点项目(30930107).

摘要: 肿瘤严重威胁人类生命健康,因此发现新结构类型、新作用机制、更有效的抗肿瘤药成为当务之急。天然产物在抗肿瘤药物发现过程中有着重要的作用和意义。综述几种具有抗肿瘤活性的天然产物,重点阐述其作用机制、抗肿瘤活性及构效关系的研究进展。

English Abstract

武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
引用本文: 武善超, 盛春泉, 张万年. 来源于天然产物的抗肿瘤先导结构研究进展[J]. 药学实践与服务, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
Citation: WU Shanchao, SHENG Chunquan, ZHANG Wannian. Advance in anti-cancer lead-compounds derived from natural products[J]. Journal of Pharmaceutical Practice and Service, 2014, 32(5): 337-341,371. doi: 10.3969/j.issn.1006-0111.2014.05.005
参考文献 (47)

目录

    /

    返回文章
    返回