留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

细胞共培养模型在口服药物吸收研究中的应用

黎迎 朱春燕

黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
引用本文: 黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
Citation: LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001

细胞共培养模型在口服药物吸收研究中的应用

doi: 10.3969/j.issn.1006-0111.2015.04.001
基金项目: 国家自然科学基金面上项目(81274094);协和研究生创新基金项目(10023-1007-1017)

Application of cell co-culture models in absorption of oral drug

  • 摘要: 细胞共培养体系能很好地模拟人体小肠生理环境,准确预测药物在肠道内的转运和代谢情况,增强体外细胞模型与整体动物实验研究之间的相关性,近年来在评价口服药物吸收方面发挥着越发重要的作用,已成为新药研发过程中评价药物口服吸收的热点。综述体外模拟肠道环境的细胞共培养模型,并对其应用于口服药物研发的体外评价吸收做出展望。
  • [1] Fröhlich E, Roblegg E. Models for oral uptake of nanoparticles in consumer products[J]. Toxicology, 2012,291(1-3):10-17.
    [2] Chen XM, Elisia I, Kitts DD. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design[J]. J Pharmacol Toxicol Meth, 2010, 61(3):334-342.
    [3] Behrens I, Stenberg P, Artursson P, et al. Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells[J]. Pharm Res, 2001,18 (8):1138-1145.
    [4] Walter E, Janich S, Roessler BJ, et al. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans[J]. J Pharm Sci,1996,85(10):1070-1076.
    [5] Woitiski CB, Sarmento B, Carvalho RA, et al. Facilitated nanoscale delivery of insulin across intestinal membrane models[J]. Int J Pharm, 2011, 412(1-2):123-131.
    [6] Rocha RA, Vélez D, Devesa V. In vitro evaluation of intestinal fluoride absorption using different cell models[J]. Toxicol Lett,2012,210(3):311-317.
    [7] Mahler GJ, Shuler ML, Glahn RP. Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability[J]. J Nutr Biochem, 2009, 20(7):494-502.
    [8] Vázquez M, Calatayud M, Vélez D, et al. Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells[J].Toxicology,2013,311(3):147-153.
    [9] Sam M, Linda F, David JB, et al. Melittin as a Permeability EnhancerⅡ: In vitro investigations in human mucus secreting intestinal monolayers and rat colonic mucosae [ J]. Pharm Res, 2007, 24(7): 1346-1356.
    [10] Maresca M, Mahfoud R, Garmy N, et al. The Mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells[J]. Amer Soc Nutr Sci,2002,132 (9):2723-2731.
    [11] Gagnon M, Zihler Berner A, Chervet N, et al. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion[J].J Microbiol Meth,2013,94(3):274-279.
    [12] Lai YH, D'Souza MJ. Microparticle transport in the human intestinal M cell model[J]. J Drug Target, 2008, 16(1): 36-42.
    [13] Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis[J]. FEMS Immunol MedMicrobiol, 2008, 52(1): 2-12.
    [14] des Rieux A, Ragnarsson EG, Gullberg E, et al. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium[J]. Eur J Pharm Sci, 2005,25(4-5): 455-465.
    [15] Gullberg E, Leonard M, Karlsson J, et al. Expression of specific markers and particle transport in a new human intestinal M-cell model[J]. Biochem Biophys Res Commun, 2000, 279(3): 808-813.
    [16] des Rieux A, Fievez V, Théate I, et al. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells[J]. Eur J Pharm Sci, 2007, 30(5): 380-391.
    [17] Garinot M, Fiévez V, Pourcelle V, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination[J]. J Control Release, 2007, 120(3):195-204.
    [18] Pielage JF, Cichon C, Greune L, et al. Reversible differentiation of Caco-2 cells reveals galectin-9 as a surface marker molecule for human follicle-associated epithelia and M cell-like cells[J]. Int J Biochem Cell Biol, 2007, 39(10): 1886-1901.
    [19] Kadiyala I, Looa Y, Roy K, et al. Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes[J]. Eur J Pharm Sci, 2010, 39(1-3):103-109.
    [20] Tonry JH, Popov SG, Narayanan A, et al. In vivo murine and in vitro M-like cell models of gastrointestinal anthrax[J]. Microb Infect, 2013, 15(1):37-44.
    [21] Antunes F, Andrade F, Araújo F, et al. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs[J]. Eur J Pharm Biopharm, 2013, 83(3): 427-435.
    [22] Araújo F, Sarmento B.Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies[J].Int J Pharm, 2013, 458(1):128-134.
    [23] Han HK, Oh DM, Amidon GL. Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPepT1 cells overexpressing a human peptide transporter[J]. Pharm Res,1998,15(9):1382-1386.
    [24] Annette B, Sibylle H, Kayoshi S, et al. Cell cultures as tools in biopharmacy[J]. Eur J Pharm Sci, 2000, 11 (Suppl2):S51-S60.
    [25] Tang F, Horie K, Borchardt RT. Are MDCK cells transfected with MRP2 gene a good model of the human intestinal mucosa?[J].Pharm Res, 2002, 19(6):773-779.
    [26] Cummins CL, Jacobsen W, Christians U, et al.CYP3A4-transfected Caco-2 cells as a tool for understanding biochemical absorption barriers: studies with sirolimus and midazolam[J]. J Pharmacol Exper Therap, 2004,308 (1):143-155.
    [27] Korjamo T, Monkkonen J, Uusitalo J, et al. Metabolic and efflux properties of Caco-2 cells stably transfected with nuclear receptors[J].Pharm Res, 2006, 23(9):1991-2001.
    [28] Agarwal S, Jain R, Pal D,et al. Functional characterization of peptide transporters in MDCKII-MDR1 cell line as a model for oral absorption studies[J]. Int J Pharm, 2007, 332(1-2):147-152.
    [29] Xiaokui H, Qi L, Changyuan W, et al. Enhancement effect of P-gp inhibitors on the intestinal absorption and antiproliferative activity of bestatin[J]. Eur J Pharm Sci, 2013, 50(3-4):420-428.
    [30] Hellinger E, Bakk ML, Pócza P,et al. Drug penetration model of vinblastine-treated Caco-2 cultures[J]. Eur J Pharmaceut Sci, 2010, 41(1): 96-106.
    [31] Brayden DJ, Griffin J. Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers[J].Vet Res Commun, 2008, 32(1):93-106.
    [32] Darwich AS, Neuhoff S, Jamei M, et al. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "advanced dissolution, absorption, metabolism (ADAM)" model[J]. Curr Drug Metabol,2010,11(9):716-729.
    [33] Schmohl M, Schneiderhan-Marra N, Baur N, et al. Characterization of immunologically active drugs in a novel organotypic co-culture model of the human gut and whole blood[J]. Int Immunopharmacol, 2012, 14(4):722-728.
    [34] Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease[J]. Lab Invest, 2004, 84(3),282-291.
    [35] Yasuda M, Furuyashiki T, Nakamura T,et al. Immunomodulatory activity of enzymatically synthesized glycogen and its digested metabolite in a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages[J].Food Funct, 2013,4(9), 1387-1393.
    [36] Leonard F, Collnot EM, Lehr CM. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro[J]. Mol Pharm, 2013, 7(6), 2103-2119.
    [37] 陈晓清,焦 红,程树军,等.Caco-2细胞与肠道菌共培养初建体外肠道共生模型[J].中山大学学报(医学科学版),2012,33(1):121-126.
    [38] Le Hégarat L, Huet S, Fessard V. A co-culture system of human intestinal Caco-2 cells and lymphoblastoid TK6 cells for investigating the genotoxicity of oral compounds[J]. Mutagenesis,2012,27(6):631-636.
  • [1] 李锐, 张倩倩, 王瑞冬, 高小峰.  国家集中带量采购政策下样本医院良性前列腺增生治疗药物使用情况分析 . 药学实践与服务, 2025, 43(2): 1-6. doi: 10.12206/j.issn.2097-2024.202408031
    [2] 张艺昕, 关欣怡, 王博宁, 闻俊, 洪战英.  二氢吡啶类钙离子拮抗药物手性分析及其立体选择性药动学研究进展 . 药学实践与服务, 2024, 42(8): 319-324. doi: 10.12206/j.issn.2097-2024.202308062
    [3] 夏哲炜, 曾垣烨, 朱海菲, 李育, 陈啸飞.  核磁共振磷谱法测定磷酸氢钙咀嚼片中药物含量 . 药学实践与服务, 2024, 42(9): 399-401, 406. doi: 10.12206/j.issn.2097-2024.202404063
    [4] 孙丹倪, 黄勇, 张嘉宝, 王培.  代谢相关脂肪性肝病的无创诊断与药物治疗 . 药学实践与服务, 2024, 42(10): 411-418. doi: 10.12206/j.issn.2097-2024.202403049
    [5] 陈怡君, 王卓, 何苗, 张宇, 田泾.  泌尿系统碎石术抗菌药物预防使用合理管控实践 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202402034
    [6] 张岩, 李炎君, 刘家荟, 邓娇, 原苑, 张敬一.  药物性肝损伤不良反应分析 . 药学实践与服务, 2024, 42(): 1-5. doi: 10.12206/j.issn.2097-2024.202404034
    [7] 张元林, 宋凯, 孙蕊, 舒飞, 舒丽芯, 杨樟卫.  基于真实世界数据的药物利用研究综述 . 药学实践与服务, 2024, 42(6): 238-243. doi: 10.12206/j.issn.2097-2024.202312010
    [8] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [9] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [10] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
    [11] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [12] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [13] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [14] 徐飞, 陈瑾, 鲁育含, 李志勇.  肠道菌群参与糖尿病肾病的机制研究进展 . 药学实践与服务, 2024, 42(5): 181-184, 197. doi: 10.12206/j.issn.2097-2024.202312023
    [15] 杨嘉宁, 赵一颖, 肖伟.  七味脂肝方对非酒精性脂肪性肝炎动物模型的药效学评价 . 药学实践与服务, 2024, 42(9): 389-398. doi: 10.12206/j.issn.2097-2024.202404096
    [16] 王鹏, 陈顺, 赵逸, 高守红, 王志鹏.  卡培他滨致小鼠手足综合征模型的建立及评价 . 药学实践与服务, 2024, 42(9): 385-388, 398. doi: 10.12206/j.issn.2097-2024.202308045
    [17] 王雪莲, 郑斯莉, 李志勇, 罗亨宇, 缪朝玉.  全身过表达人METRNL基因小鼠模型的构建与验证 . 药学实践与服务, 2024, 42(5): 198-202, 222. doi: 10.12206/j.issn.2097-2024.202311014
    [18] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
  • 加载中
计量
  • 文章访问数:  3632
  • HTML全文浏览量:  290
  • PDF下载量:  715
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-21
  • 修回日期:  2015-03-05

细胞共培养模型在口服药物吸收研究中的应用

doi: 10.3969/j.issn.1006-0111.2015.04.001
    基金项目:  国家自然科学基金面上项目(81274094);协和研究生创新基金项目(10023-1007-1017)

摘要: 细胞共培养体系能很好地模拟人体小肠生理环境,准确预测药物在肠道内的转运和代谢情况,增强体外细胞模型与整体动物实验研究之间的相关性,近年来在评价口服药物吸收方面发挥着越发重要的作用,已成为新药研发过程中评价药物口服吸收的热点。综述体外模拟肠道环境的细胞共培养模型,并对其应用于口服药物研发的体外评价吸收做出展望。

English Abstract

黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
引用本文: 黎迎, 朱春燕. 细胞共培养模型在口服药物吸收研究中的应用[J]. 药学实践与服务, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
Citation: LI Ying, ZHU Chunyan. Application of cell co-culture models in absorption of oral drug[J]. Journal of Pharmaceutical Practice and Service, 2015, 33(4): 289-292,327. doi: 10.3969/j.issn.1006-0111.2015.04.001
参考文献 (38)

目录

    /

    返回文章
    返回