留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应中央军委要求,2022年9月起,《药学实践杂志》将更名为《药学实践与服务》,双月刊,正文96页;2023年1月起,拟出版月刊,正文64页,数据库收录情况与原《药学实践杂志》相同。欢迎作者踊跃投稿!

Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究

姜文丽 黄才国

姜文丽, 黄才国. Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究[J]. 药学实践与服务, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
引用本文: 姜文丽, 黄才国. Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究[J]. 药学实践与服务, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
JIANG Wenli, HUANG Caiguo. Wentilactone A inhibition of migration of small cell lung carcinoma NCI-H1688 cell line[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
Citation: JIANG Wenli, HUANG Caiguo. Wentilactone A inhibition of migration of small cell lung carcinoma NCI-H1688 cell line[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007

Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究

doi: 10.3969/j.issn.1006-0111.2016.03.007
基金项目: 国家自然科学基金面上项目(41576160,81473239)

Wentilactone A inhibition of migration of small cell lung carcinoma NCI-H1688 cell line

  • 摘要: 目的 探讨小分子化合物Wentilactone A (WA)抑制小细胞肺癌(small cell lung cancer,SCLC)细胞系NCI-H1688细胞迁移的机制。 方法 采用划痕实验、噻唑蓝[3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,MTT]实验检测小分子化合物WA对细胞迁移和增殖能力的影响。免疫荧光实验检测化合物WA作用后SCLC细胞系NCI-H1688细胞中ATF3蛋白的表达。Western blot验证ATF3/Nrf2/AKR1C1信号通路的关键蛋白。 结果 小分子化合物WA抑制SCLC细胞系NCI-H1688细胞的迁移和增殖,加入化合物WA 24 h组与48 h组的IC50分别为(1.03±0.30)和(0.46±0.18) μmol/L。WA作用组NCI-H1688细胞的相对迁移距离为(8.73±1.06) mm,低于对照组的(15.63±3.11) mm,过表达AKR1C1基因后NCI-H1688细胞迁移距离为(24.37±0.90) mm,过表达AKR1C1基因并且WA作用后NCI-H1688细胞的迁移距离为(14.17±1.31) mm,差异有统计学意义(P<0.05)。ATF3是AKR1C1基因的负性调节因子,化合物WA作用后,ATF3蛋白表达水平升高,抑制Nrf2与ARE结合,从而抑制AKR1C1蛋白的表达。 结论 WA通过ATF3/Nrf2/AKR1C1信号通路抑制SCLC细胞系NCI-H1688细胞的迁移和增殖。
  • [1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
    [2] Chen W, Zheng R, Zhang S, et al. Report of cancer incidence and mortality in China, 2010[J]. Ann Transl Med, 2014, 2(7):61.
    [3] Ulahannan SV, Brahmer JR. Antiangiogenic agents in combination with chemotherapy in patients with advanced non-small cell lung cancer[J]. Cancer Invest, 2011,29(4):325-337.
    [4] Modesto JL, Hull A, Angstadt AY, et al. NNK reduction pathway gene polymorphisms and risk of lung cancer[J]. Mol Carcinog, 2015, 54(Suppl 1):E94-E102.
    [5] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016,66(1):7-30.
    [6] Stinchcombe TE,Gore EM, Limited-stage small cell lung cancer:current chemoradiotherapy treatment paradigms[J]. Oncologist, 2010,15(2):187-195.
    [7] Johnson BE. Management of small cell lung cancer[J]. Clin Chest Med, 2002,23(1):225-239.
    [8] Traven K, Sinreih M, Stojan J, et al. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3[J]. Chem Biol Interact, 2015, 234:349-359.
    [9] Stefane B, Brozic P, Vehovc M, et al. New cyclopentane derivatives as inhibitors of steroid metabolizing enzymes AKR1C1 and AKR1C3[J]. Eur J Med Chem, 2009,44(6):2563-2571.
    [10] Penning TM. The aldo-keto reductases (AKRs):Overview[J]. Chem Biol Interact, 2015,234:236-246.
    [11] Rizner TL, Penning TM. Role of aldo-keto reductase family 1(AKR1) enzymes in human steroid metabolism[J]. Steroids, 2014,79:49-63.
    [12] Haddad SA, Lunetta KL, Ruiz-Narváez EA, et al. Hormone-related pathways and risk of breast cancer subtypes in African American women[J]. Breast Cancer Res Treat, 2015,154(1):145-154.
    [13] Naumann JM, Messinger J, Bureik M. Human 20alpha-hydroxysteroid dehydrogenase (AKR1C1)-dependent biotransformation with recombinant fission yeast Schizosaccharomyces pombe[J]. J Biotechnol, 2010,150(1):161-170.
    [14] Byrns MC, Jin Y, Penning TM. Inhibitors of type 517beta-hydroxysteroid dehydrogenase (AKR1C3):overview and structural insights[J]. J Steroid Biochem Mol Biol, 2011,125(1-2):95-104.
    [15] Matsunaga T, Hojo A, Yamane Y, et al. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers[J]. Chem Biol Interact, 2013,202(1-3):234-242.
    [16] Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression[J]. Free Radic Biol Med, 2004,36(10):1199-1207.
    [17] Nishinaka T, Miura T, Okumura M, et al. Regulation of aldo-keto reductase AKR1B10 gene expression:involvement of transcription factor Nrf2[J]. Chem Biol Interact, 2011,191(1-3):185-191.
    [18] Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2(Keap1) signaling in oxidative stress[J]. Free Radic Biol Med, 2009,47(9):1304-1309.
    [19] Cheng X, Ku CH, Siow RC. Regulation of the Nrf2 antioxidant pathway by microRNAs:New players in micromanaging redox homeostasis[J]. Free Radic Biol Med, 2013,64:4-11.
    [20] Brown SL, Sekhar KR, Rachakonda G, et al. Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2(Nrf2)-regulated stress pathway[J]. Cancer Res, 2008,68(2):364-368.
    [21] 田鹤,姜文丽,楼国良,等.AKR1C1在非小细胞肺癌的表达及功能分析[J].临床肿瘤学杂志,2015,20(6):487-491.
  • [1] 迟文雅, 袁艳, 李伟林, 吴茼妤, 俞媛.  负载骨髓间充质干细胞/白藜芦醇脂质体的水凝胶支架用于创伤性脑损伤治疗 . 药学实践与服务, 2024, 42(): 1-8. doi: 10.12206/j.issn.2097-2024.202406034
    [2] 修建平, 杨朝爱, 刘禧澳, 潘乾禹, 韦广旭, 王卫星.  全反式维甲酸对肝星状细胞活化及氧化应激的作用和机制探索 . 药学实践与服务, 2024, 42(7): 291-296. doi: 10.12206/j.issn.2097-2024.202312054
    [3] 姜涛, 徐卫凡, 蒋益萍, 夏天爽, 辛海量.  巴戟天丸组方对Aβ损伤成骨细胞的作用及基于网络药理学的机制研究 . 药学实践与服务, 2024, 42(7): 285-290, 296. doi: 10.12206/j.issn.2097-2024.202305011
    [4] 杨媛媛, 安晓强, 许佳捷, 江键, 梁媛媛.  正极性驻极体联合5-氟尿嘧啶对瘢痕成纤维细胞生长抑制的协同作用 . 药学实践与服务, 2024, 42(6): 244-247. doi: 10.12206/j.issn.2097-2024.202310027
    [5] 刘汝雄, 杨万镇, 涂杰, 盛春泉.  铁死亡调控蛋白GPX4的小分子抑制剂研究进展 . 药学实践与服务, 2024, 42(9): 375-378. doi: 10.12206/j.issn.2097-2024.202312075
    [6] 刘丽艳, 余小翠, 孙传铎.  纳武利尤单抗治疗非小细胞肺癌有效性及安全性的Meta分析 . 药学实践与服务, 2024, 42(10): 451-456. doi: 10.12206/j.issn.2097-2024.202310044
    [7] 宋雨桐, 夏德润, 顾珩, 唐少文, 易洪刚, 沃红梅.  帕博利珠单抗与铂类化疗方案在晚期非小细胞肺癌一线治疗中的药物经济学评价 . 药学实践与服务, 2024, 42(8): 334-340. doi: 10.12206/j.issn.2097-2024.202303023
    [8] 冯志惠, 邓仪卿, 叶冰, 安培, 张宏, 张海军.  雀梅藤石油醚提取物诱导三阴性乳腺癌细胞凋亡的实验研究 . 药学实践与服务, 2024, 42(6): 253-259. doi: 10.12206/j.issn.2097-2024.202311055
  • 加载中
计量
  • 文章访问数:  3669
  • HTML全文浏览量:  413
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 修回日期:  2016-03-31

Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究

doi: 10.3969/j.issn.1006-0111.2016.03.007
    基金项目:  国家自然科学基金面上项目(41576160,81473239)

摘要: 目的 探讨小分子化合物Wentilactone A (WA)抑制小细胞肺癌(small cell lung cancer,SCLC)细胞系NCI-H1688细胞迁移的机制。 方法 采用划痕实验、噻唑蓝[3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,MTT]实验检测小分子化合物WA对细胞迁移和增殖能力的影响。免疫荧光实验检测化合物WA作用后SCLC细胞系NCI-H1688细胞中ATF3蛋白的表达。Western blot验证ATF3/Nrf2/AKR1C1信号通路的关键蛋白。 结果 小分子化合物WA抑制SCLC细胞系NCI-H1688细胞的迁移和增殖,加入化合物WA 24 h组与48 h组的IC50分别为(1.03±0.30)和(0.46±0.18) μmol/L。WA作用组NCI-H1688细胞的相对迁移距离为(8.73±1.06) mm,低于对照组的(15.63±3.11) mm,过表达AKR1C1基因后NCI-H1688细胞迁移距离为(24.37±0.90) mm,过表达AKR1C1基因并且WA作用后NCI-H1688细胞的迁移距离为(14.17±1.31) mm,差异有统计学意义(P<0.05)。ATF3是AKR1C1基因的负性调节因子,化合物WA作用后,ATF3蛋白表达水平升高,抑制Nrf2与ARE结合,从而抑制AKR1C1蛋白的表达。 结论 WA通过ATF3/Nrf2/AKR1C1信号通路抑制SCLC细胞系NCI-H1688细胞的迁移和增殖。

English Abstract

姜文丽, 黄才国. Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究[J]. 药学实践与服务, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
引用本文: 姜文丽, 黄才国. Wentilactone A抑制小细胞肺癌系NCI-H1688细胞的迁移研究[J]. 药学实践与服务, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
JIANG Wenli, HUANG Caiguo. Wentilactone A inhibition of migration of small cell lung carcinoma NCI-H1688 cell line[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
Citation: JIANG Wenli, HUANG Caiguo. Wentilactone A inhibition of migration of small cell lung carcinoma NCI-H1688 cell line[J]. Journal of Pharmaceutical Practice and Service, 2016, 34(3): 219-222,274. doi: 10.3969/j.issn.1006-0111.2016.03.007
参考文献 (21)

目录

    /

    返回文章
    返回