Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code

WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
Citation: WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003

Signaling pathways involved in radioprotection

doi: 10.3969/j.issn.1006-0111.2017.01.003
  • Received Date: 2016-10-13
  • Rev Recd Date: 2016-12-19
  • People do have some risks of exposing to the radiation during their daily life.Longtime or megadose ionizing radiation can induce tissue damage, which is related to cell apoptosis, necrosis and inflammation, etc..Currently, more and more radio protective agents were developed and several signaling pathways were involved. NFκB, MAPK, PI3k/Akt, p53 and STAT3 signaling pathways were reviewed in this article.
  • [1] Kamran MZ,Ranjan A, Kaur N,et al.Radioprotective agents:strategies andtranslational advances[J]. Med Res Rev, 2016, 36(3):461-493.
    [2] 王恺,刘超,刘永学.辐射防护剂的研究进展[J]. 癌变·畸变·突变, 2014, 26(2):157-160.
    [3] 王坤平, 徐勇, 李长燕.抗辐射药物研发进展[J]. 军事医学, 2015,39(6):464-467.
    [4] 舒彬, 刘真, 贾赤宇. 急性肺损伤/急性呼吸窘迫综合征与NF-κB信号转导关系的研究进展[J]. 中华损伤与修复杂志(电子版), 2016,11(2):147-150.
    [5] Joyce D, Albanese C, Steer J,et al.NF-kappaB and cell-cycle regulation:the cyclinconnection[J]. Cytokine Growth Factor Rev, 2001, 12(1):73-90.
    [6] Jung M, Dritschilo A. NF-kappa B signaling pathway as a target for human tumor radiosensitization[J]. Semin Radiat Oncol, 2001,11(4):346-351.
    [7] Russell JS, Raju U, Gumin GJ, et al. Inhibition of radiation-induced nuclear factor-kappaB activation by an anti-Ras single-chain antibody fragment:lack of involvement in radiosensitization[J]. Cancer Res, 2002, 62(8):2318-2326.
    [8] Gudkov AV, Komarova EA. Radioprotection:smart games with death[J]. J Clin Invest, 2010, 120(7):2270-2273.
    [9] Wang Y,Meng A, Lang H, et al. Activation of nuclear factor kappaB in vivo selectively protects the murine small intestine against ionizing radiation-induced damage[J]. Cancer Res, 2004, 64(17):6240-6246.
    [10] Burdelya LG,Krivokrysenko VI, Tallant TC,et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models[J]. Science, 2008, 320(5873):226-230.
    [11] Pal HC,Athar M, Elmets CA,et al. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NF kappaB signaling pathways in SKH-1 hairless mice[J]. Photochem Photobiol, 2015, 91(1):225-234.
    [12] Morrison DK. MAP kinase pathways[J]. Cold Spring HarbPerspect Biol, 2012, 4(11):1-5.
    [13] Leach JK,Van Tuyle G, Lin PS, et al. Ionizing radiation-induced mitochondria-dependent generation of reactive oxygen/nitrogen[J]. Cancer Res, 2001, 61(10):3894-3901.
    [14] Hagan MP, Wang L, Hanley JR, et al. Ionizing radiation-induced mitogen-activated protein (MAP) kinase activation in DU145 prostate carcinoma cells:MAP kinase inhibition enhances radiation-induced cell killing and G2/M-phase arrest[J]. Radiat Res, 2000,153(4):371-383.
    [15] Yacoub A,McKinstry R, Hinman D, et al. Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling[J]. Radiat Res, 2003, 159(4):439-452.
    [16] Golding SE, Rosenberg E, Neill S, et al. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response[J]. Cancer Res, 2007, 67(3):1046-1053.
    [17] Rosette C, KarinM. Ultraviolet light and osmotic stress:activation of the JNK cascade through multiple growth factor and cytokine receptors[J]. Science, 1996, 274(5290):1194-1197.
    [18] Bar-Shira A,Rashi-Elkeles S, Zlochover L,et al. ATM-dependent activation of the gene encoding MAP kinase phosphatase 5 by radiomimetic DNA damage[J]. Oncogene, 2002, 21(5):849-855.
    [19] Potapova O, Haghighi A, Bost F, et al. The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin[J]. J Biol Chem, 1997, 272(22):14041-14044.
    [20] Hayakawa J, Depatie C, Ohmichi M, et al. The activation of c-Jun NH2-terminal kinase (JNK) by DNA-damaging agents serves to promote drug resistance via activating transcription factor 2(ATF2)-dependent enhanced DNA repair[J]. J Biol Chem, 2003, 278(23):20582-20592.
    [21] MacLaren A, Black EJ, Clark W, et al. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation[J]. Mol Cell Biol, 2004, 24(20):9006-9018.
    [22] Wang XF,Mcgowan CH, Zhao M,et al. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest[J]. Mol Cell Biol, 2000,20(13):4543-4552.
    [23] Toulany M, BaumannM, RodemannHP. Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Rasactivity[J]. Mol Cancer Res, 2007, 5(8):863-872.
    [24] McKenna WG,Muschel RJ, Gupta AK,et al. The RAS signal transduction pathway and its role in radiation sensitivity[J]. Oncogene, 2003, 22(37):5866-5875.
    [25] Bonnaud S,Niaudet C, Legoux F,et al. Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis[J]. Cancer Res, 2010, 70(23):9905-9915.
    [26] Wang J, Zhang Y, Zhu Q,et al.Emodin protects mice against radiation-induced mortality and intestinal injury via inhibition of apoptosis and modulation of p53[J]. Environ Toxicol Pharmacol, 2016, 46:311-318.
    [27] Komarova EA,Kondratov RV, Wang K, et al. Dual effect of p53 on radiation sensitivity in vivo:p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice[J]. Oncogene, 2004, 23(19):3265-3271.
    [28] 陈晓艳, 张江虹,邵春林. STAT3与辐射敏感相关性的研究进展[J]. 国际放射医学核医学杂志, 2016, 40(3):191-195.
    [29] Tan PX, Du SS, Ren C,et al. Radiation-induced Cochlea hair cell death:mechanisms and protection[J]. Asian Pac J Cancer Prev, 2013, 14(10):5631-5635.
    [30] Goel A, Aggarwal BB.Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs[J]. Nutr Cancer, 2010, 62(7):919-930.
  • 加载中
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3173) PDF downloads(1429) Cited by()

Related
Proportional views

Signaling pathways involved in radioprotection

doi: 10.3969/j.issn.1006-0111.2017.01.003

Abstract: People do have some risks of exposing to the radiation during their daily life.Longtime or megadose ionizing radiation can induce tissue damage, which is related to cell apoptosis, necrosis and inflammation, etc..Currently, more and more radio protective agents were developed and several signaling pathways were involved. NFκB, MAPK, PI3k/Akt, p53 and STAT3 signaling pathways were reviewed in this article.

WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
Citation: WANG Jing, ZHANG Yuefan, LI Tiejun. Signaling pathways involved in radioprotection[J]. Journal of Pharmaceutical Practice and Service, 2017, 35(1): 8-11. doi: 10.3969/j.issn.1006-0111.2017.01.003
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return