Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 41 Issue 5
May  2023
Turn off MathJax
Article Contents

WANG Zhicong, XIE Bin, YUAN Xing, XU Xike, LIU Runhui. Mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis based on network pharmacology[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 296-301. doi: 10.12206/j.issn.2097-2024.202112001
Citation: WANG Zhicong, XIE Bin, YUAN Xing, XU Xike, LIU Runhui. Mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis based on network pharmacology[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 296-301. doi: 10.12206/j.issn.2097-2024.202112001

Mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis based on network pharmacology

doi: 10.12206/j.issn.2097-2024.202112001
  • Received Date: 2021-12-01
  • Rev Recd Date: 2022-09-07
  • Available Online: 2023-07-14
  • Publish Date: 2023-05-25
  •   Objective   To study the mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis, and to provide a theoretical basis for long-term clinical application.   Methods  The chemical components and targets of Shexiang Baoxin pill were collected and screened by TCMSP, TCMID, ETCM and BATMAN databases. The targets related to atherosclerosis were collected and screened by DisGeNet, OMIM, TCMSP, DrugBank and DisGeNet. Drug-compound target network and protein-protein interaction network were constructed. Go and KEGG enrichment analysis of Shexiang Baoxin pill in the treatment of atherosclerosis were carried out on MetaScape platform.   Results  114 potential therapeutic components of Shexiang Baoxin pill on atherosclerosis were selected, corresponding to 175 targets. The results of network analysis showed that the main active components of Shexiang Baoxin pill were chenodeoxycholic acid, ursodeoxycholic acid, cinnamaldehyde and ginsenoside Rb1. The results of pathway enrichment showed that the anti-atherosclerotic mechanism of Shexiang Baoxin pill was related to the regulation of immunity, inflammation, and metabolism.   Conclusion  The active components of Shexiang Baoxin pill could act on ALB, INS, AKT1, ACTB, TNF, IL-6 and other targets, regulating multiple pathways to achieve the therapeutic effect on atherosclerosis.
  • [1] 王新, 李春阳, 苏立平, 等. 动脉粥样硬化发病机制及治疗的研究进展[J]. 实用心脑肺血管病杂志, 2017, 25(2):1-4. doi:  10.3969/j.issn.1008-5971.2017.02.001
    [2] 杜文婷, 王臻楠, 顾耘. 动脉粥样硬化的中西医认识概况[J]. 中西医结合心脑血管病杂志, 2016, 14(22):2634-2637. doi:  10.3969/j.issn.1672-1349.2016.22.014
    [3] 谢彬, 袁星, 徐希科, 等. 中药复方抗动脉粥样硬化作用机制的研究进展[J]. 药学实践杂志, 2021, 39(4):295-298,304.
    [4] 边晶, 张洪义. 苏合香丸古今应用初探[J]. 中医药临床杂志, 2016, 28(6):875-878. doi:  10.16448/j.cjtcm.2016.0310
    [5] 国家药典委员会. 中华人民共和国药典(一部): 2020年版[S]. 北京: 中国医药科技出版社, 2020.
    [6] LU L, SUN X D, CHEN C, et al. Shexiang Baoxin pill, derived from the traditional Chinese medicine, provides protective roles against cardiovascular diseases[J]. Front Pharmacol,2018,9:1161. doi:  10.3389/fphar.2018.01161
    [7] 冀元元, 李纲, 李玉东, 等. 麝香保心丸对冠心病患者颈总动脉粥样硬化斑块及炎症因子的影响[J]. 中国老年学杂志, 2015, 35(21):6077-6079. doi:  10.3969/j.issn.1005-9202.2015.21.032
    [8] 陶彦谷, 李进营, 韦燕妮, 等. 麝香保心丸防治动脉粥样硬化的实验研究[J]. 中药新药与临床药理, 2015, 26(4):508-511.
    [9] LU L, QIN Y T, ZHANG X X, et al. Shexiang Baoxin pill alleviates the atherosclerotic lesions in mice via improving inflammation response and inhibiting lipid accumulation in the arterial wall[J]. Mediators Inflamm,2019,2019:6710759.
    [10] LUO T T, LU Y, YAN S K, et al. Network pharmacology in research of Chinese medicine formula: methodology, application and prospective[J]. Chin J Integr Med,2020,26(1):72-80. doi:  10.1007/s11655-019-3064-0
    [11] RU J L, LI P, WANG J N, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform,2014,6:13. doi:  10.1186/1758-2946-6-13
    [12] XU H Y, ZHANG Y Q, LIU Z M, et al. ETCM: an encyclopaedia of traditional Chinese medicine[J]. Nucleic Acids Res,2019,47(D1):D976-D982. doi:  10.1093/nar/gky987
    [13] LIU Z Y, GUO F F, WANG Y, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine[J]. Sci Rep,2016,6:21146. doi:  10.1038/srep21146
    [14] GUO M F, DAI Y J, GAO J R, et al. Uncovering the mechanism of Astragalus membranaceus in the treatment of diabetic nephropathy based on network pharmacology[J]. J Diabetes Res,2020,2020:5947304.
    [15] REBHAN M, CHALIFA-CASPI V, PRILUSKY J, et al. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support[J]. Bioinformatics,1998,14(8):656-664. doi:  10.1093/bioinformatics/14.8.656
    [16] AMBERGER J S, BOCCHINI C A, SCHIETTECATTE F, et al. OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43(Database issue): D789-D798.
    [17] PIÑERO J, RAMÍREZ-ANGUITA J M, SAÜCH-PITARCH J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucleic Acids Res,2019:845-855.
    [18] ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun,2019,10(1):1523. doi:  10.1038/s41467-019-09234-6
    [19] 李恒祺. 鹅去氧胆酸对脂肪肝出血综合征蛋鸡肝脏炎症反应的影响[D]. 沈阳: 沈阳农业大学, 2020.
    [20] BODE N, GREBE A, KERKSIEK A, et al. Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice[J]. Biochem Biophys Res Commun,2016,478(1):356-362. doi:  10.1016/j.bbrc.2016.07.047
    [21] ZHOU P, XIE W J, LUO Y, et al. Inhibitory effects of ginsenoside Rb1 on early atherosclerosis in ApoE-/- mice via inhibition of apoptosis and enhancing autophagy[J]. Molecules,2018,23(11):2912. doi:  10.3390/molecules23112912
    [22] LI W F, ZHI W B, ZHAO J M, et al. Cinnamaldehyde attenuates atherosclerosis via targeting the IκB/NF-κB signaling pathway in high fat diet-induced ApoE-/ - mice[J]. Food Funct,2019,10(7):4001-4009. doi:  10.1039/C9FO00396G
    [23] XIANG L, JIANG P, ZHAN C S, et al. The serum metabolomic study of intervention effects of the traditional Chinese medicine Shexiang Baoxin pill and a multi-component medicine polypill in the treatment of myocardial infarction in rats[J]. Mol BioSyst,2012,8(9):2434. doi:  10.1039/c2mb25172h
    [24] 王欢, 胡元会, 耿彦婷, 等. 动脉粥样硬化病人动脉硬化程度与血压、血清蛋白的相关性研究[J]. 中西医结合心脑血管病杂志, 2016, 14(12):1321-1324. doi:  10.3969/j.issn.1672-1349.2016.12.004
    [25] TUCKA J, YU H X, GRAY K, et al. Akt1 regulates vascular smooth muscle cell apoptosis through FoxO3a and Apaf1 and protects against arterial remodeling and atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2014,34(11):2421-2428. doi:  10.1161/ATVBAHA.114.304284
    [26] NIGRO J, OSMAN N, DART A M, et al. Insulin resistance and atherosclerosis[J]. Endocr Rev,2006,27(3):242-259. doi:  10.1210/er.2005-0007
    [27] NIE H, ZHENG Y X, LI R S, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis[J]. Nat Med,2013,19(3):322-328. doi:  10.1038/nm.3085
    [28] NAKAHARA H, SONG J, SUGIMOTO M, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis[J]. Arthritis Rheum,2003,48(6):1521-1529. doi:  10.1002/art.11143
    [29] YIN Y Z, YUAN H Y, WANG C G, et al. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation[J]. Mol Endocrinol,2006,20(2):268-278. doi:  10.1210/me.2005-0197
    [30] BAEYENS N, BANDYOPADHYAY C, COON B G, et al. Endothelial fluid shear stress sensing in vascular health and disease[J]. J Clin Invest,2016,126(3):821-828. doi:  10.1172/JCI83083
    [31] 丁云录, 李驰坤, 欧喜燕, 等. 散结通脉方对ApoE−/-小鼠动脉粥样硬化主动脉钙库操纵性钙通道信号分子及血清炎症因子的影响[J]. 吉林中医药, 2020, 40(8):1062-1066.
    [32] MA J L, LI H K. The role of gut microbiota in atherosclerosis and hypertension[J]. Front Pharmacol,2018,9:1082. doi:  10.3389/fphar.2018.01082
  • 加载中
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(1)

Article Metrics

Article views(5056) PDF downloads(39) Cited by()

Related
Proportional views

Mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis based on network pharmacology

doi: 10.12206/j.issn.2097-2024.202112001

Abstract:   Objective   To study the mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis, and to provide a theoretical basis for long-term clinical application.   Methods  The chemical components and targets of Shexiang Baoxin pill were collected and screened by TCMSP, TCMID, ETCM and BATMAN databases. The targets related to atherosclerosis were collected and screened by DisGeNet, OMIM, TCMSP, DrugBank and DisGeNet. Drug-compound target network and protein-protein interaction network were constructed. Go and KEGG enrichment analysis of Shexiang Baoxin pill in the treatment of atherosclerosis were carried out on MetaScape platform.   Results  114 potential therapeutic components of Shexiang Baoxin pill on atherosclerosis were selected, corresponding to 175 targets. The results of network analysis showed that the main active components of Shexiang Baoxin pill were chenodeoxycholic acid, ursodeoxycholic acid, cinnamaldehyde and ginsenoside Rb1. The results of pathway enrichment showed that the anti-atherosclerotic mechanism of Shexiang Baoxin pill was related to the regulation of immunity, inflammation, and metabolism.   Conclusion  The active components of Shexiang Baoxin pill could act on ALB, INS, AKT1, ACTB, TNF, IL-6 and other targets, regulating multiple pathways to achieve the therapeutic effect on atherosclerosis.

WANG Zhicong, XIE Bin, YUAN Xing, XU Xike, LIU Runhui. Mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis based on network pharmacology[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 296-301. doi: 10.12206/j.issn.2097-2024.202112001
Citation: WANG Zhicong, XIE Bin, YUAN Xing, XU Xike, LIU Runhui. Mechanism of Shexiang Baoxin pill in the treatment of atherosclerosis based on network pharmacology[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(5): 296-301. doi: 10.12206/j.issn.2097-2024.202112001
  • 动脉粥样硬化(AS)作为一种慢性进行性疾病,能够引发脑卒中等一系列心脑血管疾病,从而对人类生命健康产生极大的威胁。AS发病机制复杂,目前认为主要与炎症反应、血管内皮细胞损伤、氧化应激、血小板活化等有关[1]。西药他汀类降脂药被广泛应用于治疗动脉粥样硬化,但其仍存在一定的局限性[2]。中药由于其具有多组分多靶点协同作用,在治疗慢性复杂疾病方面具有独特的优势因而受到更加广泛的应用[3]

    麝香保心丸(Shexiang Baoxin pill, SBP)源于宋朝《太平惠民合剂局方》中的苏合香丸[4],收录于2020年版《中国药典》,是国家中药保密品种,上海和黄药业公司的独家生产品种。麝香保心丸由冰片、蟾酥、人工牛黄、人参提取物、肉桂、人工麝香和苏合香组成,具有芳香温通,益气强心之功效。主要用于气滞血瘀所致的胸痹和心肌缺血所致的心绞痛、心肌梗死[5]。麝香保心丸临床上不仅作为心绞痛急性发作的治疗药物,还可以用于冠心病的长期防治[6]。临床研究证实,长期(3个月以上)服用麝香保心丸可减轻并延缓心肌缺血的发生发展,减少心血管危险事件发生,并通过保护血管内皮细胞 、减少脂质浸润和抑制炎症等,阻遏AS的发展实现[7]。动物实验证实, 麝香保心丸具有减轻新西兰大耳兔和apoE-/-小鼠AS的作用[8-9]

    网络药理学是对复方中药进行研究的有效手段,能够发现药物作用靶点、筛选生物活性成分、评价药物毒性、研究作用机制和提高质量控制[10]等。本文利用网络药理学的手段研究麝香保心丸治疗AS的作用机制,为麝香保心丸得到临床长期应用提供理论依据。

    • 从TCMSP(https://tcmspw.com/tcmsp.php[11]、TCMID(http://www.megabionet.org/tcmid/)、ETCM(http://www.tcmip.cn/ETCM/[12]和BATMAN(http://bionet.ncpsb.org.cn/batman-tcm/[13]等数据库中获取冰片、蟾酥、人工牛黄、人参提取物、肉桂、人工麝香、苏合香等七味药材所含化合物及其对应靶点。吸收、分布、代谢、排泄(ADME)指标是筛选活性化合物的重要指标,将全方所含化合物在TCMSP数据库中进行ADME筛选,将OB≥20%且DL≥0.1的化合物视为有效活性成分[14],对不符合ADME筛选的化合物进行检视,将已被证明为生物活性成分的化合物进行回收,去除重复项,即得麝香保心丸全方有效成分及其潜在靶点。为了提高获取数据的可信度,将所获得的靶点信息进行进一步筛选,剔除BATMAN数据库中score低于48的靶点和TCMID中score低于400的靶点,并去除仅有一个成分作用的靶点,得到全方靶点信息。

    • 从GeneCards(https://www.genecards.org/[15]、OMIM(https://omim.org/[16]、TCMSP(https://tcmspw.com/tcmsp.php)、DrugBank(https://go.drugbank.com/)和DisGeNet(https://www.disgenet.org/search[17]等数据库中获取动脉粥样硬化疾病靶点。剔除DisGeNet中靶点分值低于0.02的靶点和GeneCards中分值低于1的靶点,合并各数据库靶点,得到AS相关的靶点蛋白。

    • 将获取的麝香保心丸潜在靶点和AS相关靶点导入STRING(https://string-db.org/)数据库,统一转换为基因ID。取两者交集,得到麝香保心丸治疗AS相关靶点及其对应的化合物,将获取的数据导入Cytoscape3.8.2软件中进行进一步分析,构建化合物-靶点网络,以便于分析网络中的关键节点。

    • 通过STRING数据库对麝香保心丸治疗AS的靶点进行分析,构建蛋白-蛋白相互作用(PPI)网络,并将PPI网络导入CytoScape3.8.2软件进一步进行分析,探究麝香保心丸治疗AS靶点之间的相互作用关系。

    • 使用Metascape(http://metascape.org[18]数据库对获取的麝香保心丸抗AS靶点蛋白进行GO富集分析和KEGG通路分析,设定P<0.01,取生物学过程(GOBP)、分子功能(GOMF)和细胞成分(GOCC)条目的前10项,取KEGG富集通路的前20项,分析麝香保心丸治疗AS的主要相关通路及其功能。

    • 各个数据库中共检索到麝香保心丸中474个化合物,对应的潜在靶点共有6158个。经筛选后共得到麝香保心丸中化合物124个,对应的潜在靶点为452个。

    • 结合GeneCards、OMIM、TCMSP、DrugBank和DisGeNet等数据库,经过筛选,得到AS相关靶点1786个。

    • 取麝香保心丸潜在靶点与AS相关靶点绘制维恩图(图1),取二者交集,即得麝香保心丸治疗AS的175个靶点,相关成分114个。采用STRING数据库对获取的175个靶点进行分析,得到一个具有175个点和2303个边的PPI网络(图2),通过对该网络图进行分析,根据各靶点在网络中的度值判断该靶点在网络中的重要程度。在麝香保心丸治疗AS的过程中,ALB、INS、ACTB、AKT1、IL-6、TNF、IL-1B、PPARG、MAPK3、CREB1等靶点的度值排在前10位,表明这些靶点作为关键节点起到最主要的作用。

      用CytoScape3.8.2软件构建麝香保心丸治疗AS的化合物及其对应的靶点网络(图3),得到具有289个节点和1166条边的复合网络,图中化合物节点为红色,靶点节点为绿色。依据PPI网络中各靶点度值对各化合物进行评分,每个化合物分值为其潜在作用靶点的度值之和,以分值高低为依据评判麝香保心丸治疗AS过程中的贡献度,筛选出关键的20个化合物(表1)。鹅去氧胆酸、人参皂苷Rb1、肉桂醛、胆酸、熊去氧胆酸等化合物作为关键化合物,分值为1486、925、827、809和805,分别作用63、17、42、49和31个靶点,体现了中药的多成分、多靶点协同作用特点。

      化合物分值度值来源
      鹅去氧胆酸148663牛黄
      人参皂苷Rb192517人参
      肉桂醛82742肉桂、苏合香
      胆酸80949牛黄
      熊去氧胆酸80531牛黄
      人参皂苷Rh268815人参
      油酸67416肉桂
      人参皂苷Rd62712人参
      肉桂酸61436肉桂、苏合香
      人参皂苷Rh160713人参
      3-表齐墩果酸60325苏合香
      人参皂苷Rg158313人参
      5-顺式-环十五烷-1-酮54723麝香
      5-顺式-环十四烷-1-酮54723麝香
      人参皂苷F154612人参
      人参皂苷Rh454612人参
      人参皂苷Rs154612人参
      丙二酰基人参皂苷Rb254612人参
      西洋参皂苷R154612人参
      20-葡萄糖-人参皂苷Rf52811人参
    • 对GO富集条目进行分析(图4),麝香保心丸调控的靶点在质膜外侧、细胞质囊泡腔、内质网内腔、细胞顶端部分等区域富集,影响核受体活性、氧化还原酶活性、蛋白质结构域特异性结合、一氧化氮合酶调节活性等分子功能,调节血液循环、细胞对脂质的反应、细胞对激素刺激的反应、对脂多糖的反应等生物过程。KEGG通路富集显示(图5),麝香保心丸主要调节流体剪切应力与动脉粥样硬化、神经活性配体-受体相互作用、钙离子信号通路、胆汁分泌等通路,实现对AS的治疗效果。

    • 本研究基于网络药理学的方法探讨麝香保心丸治疗AS相关化合物及其潜在靶点和通路。本研究发现鹅去氧胆酸、人参皂苷Rb1、肉桂醛、胆酸、熊去氧胆酸可能在治疗AS时起到关键的作用。鹅去氧胆酸能够降低机体炎症反应、提高机体的抗氧化能力和缓解细胞自噬[19]。熊去氧胆酸能够促进AS模型ApoE(-/-)小鼠的胆固醇流出,降低炎症反应水平,减少AS斑块面积[20]。人参皂苷Rb1能够减轻炎症反应和氧化应激,并通过抑制细胞凋亡和促进自噬达到抑制ApoE(-/-)小鼠的早期AS的发展[21]。肉桂醛[22]能够调节IκB/NF-κB通路从而抑制炎症和氧化达到对AS的治疗效果。同时,这些关键成分也是麝香保心丸的入血成分,从侧面验证了网络药理学分析麝香保心丸治疗AS机制的可靠性[23]

      对麝香保心丸治疗AS的261个靶点进行分析,得到最主要的10个靶点。有研究证实,ALB与AS的严重程度具有显著的相关性[24]。AKT1参与代谢、细胞生长与存活、血管新生等多个过程进而防治AS[25]。INS是调节机体能量代谢的关键蛋白,胰岛素抵抗是导致AS的关键危险因素之一[26]。TNF能够调控细胞生长与凋亡[27],且TNF能与IL-6和IL-1B协同作用诱导VEGF的生成,促进血管新生[28]。PPARG是降血脂药的关键受体之一,能够调节脂质代谢和抑制炎症[29],对AS的防治起到重要的作用。这些关键靶点从各方面对AS进行治疗,且相互之间存在协调作用,达到了更好的治疗效果。

      麝香保心丸治疗AS的靶点主要通过调节内分泌系统和信号转导系统,对炎症、免疫和氧化应激等过程进行调控,最终达到对AS的治疗作用。血管内皮剪切应力是心血管系统中的关键调控因子,低血管内皮剪切应力会诱发炎症并且使内皮细胞更容易被低密度脂蛋白和高血糖等危险因素影响,促进AS的发展[30]。钙离子作为第二信使在体内发挥重要作用,能够介导信号转导并调节生理功能,且钙离子能够促进AS斑块的形成,研究证实AS斑块中的钙离子浓度显著增加[31]。胆汁酸代谢是调节机体胆固醇水平的关键途径,且胆固醇还能通过与核受体协同作用进一步调节免疫和炎症反应,在AS的发生发展过程中发挥重要作用[32]。对这些通路进行分析发现麝香保心丸可能通过调节内分泌,调控炎症、免疫、脂质代谢,保护血管内皮细胞等作用达到对AS的治疗效果。

      本研究通过网络药理学的方法全方面、多角度对麝香保心丸治疗动脉粥样硬化整体协同作用机制进行研究,发现了治疗过程中可能发挥主要作用的化合物、靶点和通路。本研究为麝香保心丸抗AS的机制研究提供了思路,为临床长期应用提供理论依据。

Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return